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A general formula is derived for the probability density function~PDF! of fluctuating physical quantities
measured in any stationary or statistically homogeneous process. For stationary processes, the formula relates
the PDF to two conditional means: two averages involving a general function of the quantity and its time
derivatives, the time derivative of this function and the time derivative of the quantity, taken when the
fluctuating quantity is at a certain value. A previous result by Pope and Ching@Phys. Fluids A5, 1529~1993!#
is a special case of this general formula when the function is chosen to be the time derivative of the fluctuating
quantity. An analogous formula is obtained for the PDF of fluctuating physical quantities measured in statis-
tically homogeneous processes with spatial derivatives in place of time derivatives.@S1063-651X~96!01206-8#

PACS number~s!: 47.27.Gs, 05.40.1j

In turbulent fluid flows, the physical quantities of interest,
such as the velocity and temperature fields, display highly
irregular fluctuations both in space and time. To study such
processes, using a statistical approach is most natural. The
statistics of any fluctuating quantity are described by its
probability density function~PDF!. One would, therefore,
hope to be able to calculate the PDF’s of the turbulent quan-
tities directly from the equations of motion, i.e., for example,
to calculate the PDF of velocity fluctuations from the Navier-
Stokes equation. However, this task is highly nontrivial and,
as of today, has not yet been accomplished, not even for the
relatively simpler problem of temperature being a passive
scalar advected by a random velocity field. Because of the
difficulty in obtaining explicit results for the PDF’s, it is
useful to have exact implicit formulas relating the PDF’s to
other physical quantities.

One such formula was derived by Pope and the present
author @1#. In this work, it is found that the PDF of any
physical quantity measured in a stationary process can be
expressed in terms of two conditional means of the time
derivatives of the quantity. Denoting the physical variable by
X(t) and its PDF byP(x), the formula found is

P~x!5
CN

^Ẋ2ux&
expS E

0

x ^Ẍux8&
^Ẋ2ux8&

dx8D , ~1!

where ^•••& denotes ensemble average and an overdot indi-
cates time derivative. The conditional means^Ẍux& and
^Ẋ2ux& ~short hand notations for̂ẌuX5x& and ^Ẋ2uX5x&)
represent, respectively, the averages ofẌ andẊ2, subject to
the condition thatX(t) is at a certain valuex. These condi-
tional means are, therefore, functions ofx. The constant
CN is not arbitrary but is determined by the normalization
condition: *2`

` P(x)dx51. For simplicity, we takê X&50
and ^X2&51 in the remaining of this paper.

When studying the PDF’s of fluctuating physical quanti-
ties in turbulent flows, an interesting question is what their
shapes are. The statistics of velocity and temperature deriva-
tives, which are believed to be small-scale characteristics,
have been known to deviate significantly from Gaussian and
this is related to the problem of intermittency@2#, which is a

fundamental problem in turbulence. More recent interest
stems from the discovery that the PDF of temperature fluc-
tuations in turbulent Rayleigh-Be´nard convection changes
from Gaussian in the lower Rayleigh-number regime~known
as soft turbulence! to exponential-like in the higher
Rayleigh-number regime~known as hard turbulence! @3,4#.
This discovery has prompted various studies which try to
understand the non-Gaussianity of scalar fluctuations in tur-
bulent flows@5–15#.

From ~1!, we see that the shape of the PDF, especially its
tails, is governed by the functional dependence of the two
conditional means onx. For turbulent temperature fluctua-
tions, both in thermal convection and in the wake of a
slightly heated cylinder, the conditional mean^Ẍux& is found
@1,11# to be reasonably well approximated by a linear func-
tion of x, which implies

r ~x![
^Ẍux&

^Ẋ2&
'2x. ~2!

This linearity of r (x) has also been found to hold approxi-
mately for spanwise vorticity data taken in several different
turbulent shear flows@16#. The existence of such simple and
general statistical feature in turbulence, a complicated phe-
nomenon, is quite surprising. In Ref.@16#, it is noted that
linearity is one possible form ofr (x) such that the statistical
constraints^r (x)&50 and ^xr(x)&521 are satisfied, re-
gardless of what the PDF ofX is. Nevertheless, the physics
behind this simple statistical feature remains to be under-
stood.

As a result of~2!, the tails of the PDF of turbulent tem-
perature fluctuations is mainly determined by the functional
form of the other conditional mean̂Ẋ2ux&. Indeed, the
change of statistics from Gaussian in soft turbulence to
exponential-like in hard turbulence can be directly attributed
to the change in behavior of̂Ẋ2ux& in the two turbulent
regimes @11#. In Fig. 1, we plotq(x)[^Ẋ2ux&/^Ẋ2& with
X(t)[@T(t)2^T(t)&#/A^@T(t)2^T(t)&#2 for temperature
measurementsT(t) taken, as described in Ref.@4#, in the two
turbulent regimes. It can be seen clearly thatq(x) changes
from being approximately independent ofx ~and is, there-
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fore, approximately equal to 1! in soft turbulence to being
approximately linear inuxu in hard turbulence.

In this paper, I generalize the work of Pope and Ching@1#
and derive a formula for the PDF. This formula contains~1!
as a special case and involves two conditional means
^ f Ẋux& and ^ ḟ ux&, with f being a general function ofX and
its time derivatives. Equation~1! is recovered whenf is
taken to beẊ. An analogous derivation of the PDF of fluc-
tuating quantities measured in statistically homogeneous pro-
cesses is also carried out. The result obtained is similar to
that in the stationary case with spatial derivatives in place of
time derivatives. With these exact formulas for the PDF’s of
fluctuating quantities, insights of the underlying physics de-
termining the PDF’s can be gained via the study of the con-
ditional means. In fact, some of the conditional means can be
calculated directly from the equations of motion in certain
special cases of statistically homogeneous flows@17#. More-

over, these general formulas imply that conditional means
involving different choices of the general function are re-
lated. Studying these relations may improve our understand-
ing of the statistics of fluctuations in turbulence.

In the following, the general formulas are derived. First
consider a stationary process. LetX(t) be a physical variable
measured as a function of timet at a certain fixed spatial
location. For example,X(t) can be the temperature or a com-
ponent of the velocity measured in a stationary turbulent
flow. Then the PDF ofX, P(x), is given formally by@18#

P~x!5^p~x,t !&, p~x,t ![d„X~ t !2x…, ~3!

where^•••& is the ensemble average and is equivalent to the
time average in stationary processes.

Differentiatep(x,t) with respect to time gives

]p

]t
52

]p

]x
Ẋ. ~4!

Multiplying a general functionf (X,Ẋ,Ẍ, . . . ) of X and its
time derivatives to both sides and taking ensemble average,
we get

^ ḟ ux&P~x!5
d

dx
@^ f Ẋux&P~x!#. ~5!

To obtain ~5!, we have used the fact that̂]( f p)/]t&
vanishes for stationary processes and that
^p(x,t)F(X,Ẋ,Ẍ, . . . )&5^F(X,Ẋ,Ẍ, . . . )ux&P(x) for any
functionF(X,Ẋ,Ẍ, . . . ).

We can also follow the method used in Ref.@5# to derive
~5!. BecauseX(t) is stationary, we have

^ ḟ h~X!&52^h8~X! f Ẋ& ~6!

for any differentiable functionf of X and its time derivatives
and for any well-behaved functionh of X. In ~6!, h8(X)
denotes the derivative ofh with respect toX. Writing the
ensemble averages in terms of the PDF, we get

E h~x!^ ḟ ux&P~x!dx52E h8~x!^ f Ẋux&P~x!dx. ~7!

Integrating by parts the expression on the right-hand side
gives

E h~x!^ ḟ ux&P~x!dx5E h~x!
d

dx
@^ f Ẋux&P~x!#dx. ~8!

Since~8! is valid for any arbitrary well-behavedh(x), this
implies the integrands@apart fromh(x)# have to be equal to
each other, which is exactly~5!.

Equation~5! is valid for any differentiable functionf . To
obtain a formula for P(x), we divide both sides by
^ f Ẋux&P(x) and integrate with respect tox:

P~x!5
CN

^u f Ẋuux&
expS E

0

x ^ ḟ ux8&
^ f Ẋux8&

dx8D , ~9!

whereCN is again the normalization constant. Equation~9! is
a general formula expressing the PDF ofX in terms of two

FIG. 1. The normalized conditional meanq(x)5^Ẋ2ux&/^Ẋ2& as
a function ofx for turbulent temperature data in~a! soft turbulence
@Ra56.93106 ~circles! and Ra52.13107 ~triangles!# and ~b! hard
turbulence@Ra56.03108 ~pluses!, Ra54.03109 ~crosses!, Ra5
7.331010 ~triangles!, Ra56.031011 ~asterisks!, Ra56.731012

~squares!, Ra54.131013 ~diamonds!, and Ra55.831014 ~circles!#.
The large scatter inq(x) whenuxu is large is due to the less frequent
occurence of largeuxu fluctuations.
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conditional meanŝ f Ẋux& and ^ ḟ ux&, where f (X,Ẋ,Ẍ, . . . )
is any general differentiable function ofX and its time de-
rivatives such that

^ f Ẋux&Þ0 for all values of x. ~10!

Since the sameP(x) can be expressed in terms of condi-
tional means involving differentf ’s, this implies that for any
function f satisfying~10!, we have

^ ḟ ux&

^ f Ẋux&
2

d

dx F lnS ^ f Ẋux&

^Ẋ2ux&
D G5

^Ẍux&

^Ẋ2ux&
. ~11!

In Ref. @1#, ~4! is differentiated once more and the en-
semble average of the resulting equation leads to an ordinary
differential equation forP(x) which is then solved to give
~1!. A natural question one may ask is: what result one
would get if ~4! is differentiatedn times? The answer is, we
get

(
j51

n

~21! j
dj

dxj
@^ ḟ n, j ux&P~x!#

1~21! j11
dj11

dxj11 @^ f n, j Ẋux&P~x!#50 ~12!

with

f n11,15 ḟ n,1 ,

f n11,j5 f n, j21Ẋ1 ḟ n, j , ; j52, . . . ,n,

f n11,n115 f n,nẊ, ~13!

and f 115Ẋ. We see that~12! is already contained in~5!.
Moreover, ~1! is a special case of the general formula~9!
when we takef5Ẋ. Interestingly, such a choice off is the
simplest nontrivial choice that one can make since^ f Ẋux&
vanishes forf being any polynomial inX in stationary pro-
cesses.

For the next simplest choice, we takef5Ẋ3 and the for-
mula for the PDF becomes

P~x!5
CN

^Ẋ4ux&
expS 3E

0

x^Ẋ2Ẍux8&
^Ẋ4ux8&

dx8D . ~14!

Comparing with ~1!, ~14! contains conditional means of
higher powers ofẊ. As the effect of noise in the data is more
pronounced when one computes such conditional means, one
expects the PDF obtained from~14! is noiser than that from
~1!. This is indeed the case, as shown in Fig. 2. The data used
are the temperature measurements taken at Ra57.331010 @4#
in turbulent convection. The solid line is the PDF computed
directly from the data, which is almost indistinguishable
from the solid triangles which are obtained from~1!. The
squares are obtained from~14! and scatter much more, as
expected. Nonetheless, we see that~14! is verified.

Since the tail of the PDF is mainly determined by the
exponential factor in~9!, we expect the ratio of the two con-
ditional means,̂ ḟ ux&/^ f Ẋux&, to be approximately the same
for all allowed f ’s and, in particular, approximately equal to

^Ẍux&/^Ẋ2ux&. @This means that in the left-hand side of~11!,
the x dependence of the second term is much weaker than
that of the first term.# We find that not only this is true, but
that the two conditional means, when normalized,

r f~x![
^ ḟ ux&

^ f Ẋ&
, qf~x![

^ f Ẋux&

^ f Ẋ&
, ~15!

are also approximately the same forf5Ẋ and f5Ẋ3. @Note
that r f(x) andqf(x) for f5Ẋ are justr (x) andq(x).# The
comparison is shown in Fig. 3. As expected,r f(x) and
qf(x) for f5Ẋ3 scatter more.

We next consider statistically homogeneous processes.
The derivation of a general formula for the PDF in this case
exactly parallels the derivation in the case of stationary pro-
cesses described above. Suppose nowY(r ) is a physical
variable measured as a function of positionr at a certain time
in a statistically homogeneous fluid flow. The PDF ofY,
denoted asQ(y), is given by

Q~y!5^q~y,r !&, q~y,r !5d„Y~r !2y…, ~16!

where the ensemble average^•••& is equivalent to spatial av-
erage in this case.

Differentiateq(y,r ) with respect tor gives

¹q~y,r !52
]q

]y
¹Y. ~17!

Taking the scalar product of both sides with a general differ-
entiable vector functiong(Y,¹Y,¹2Y, . . . ) toboth sides and
then ensemble~or spatial! averaging, we have

^¹•guy&Q~y!5
d

dy
@^g•¹Yuy&Q~y!#. ~18!

For homogeneous systems, there cannot be any forcing from
the boundaries onY and its spatial gradient so the term

FIG. 2. Comparison of the PDF directly computed from the
temperature data of turbulent convection taken at Ra57.331010

~solid line! with the PDF’s constructed from~1! ~solid triangles!
and ~14! ~squares! using the conditional means computed from the
data.
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^¹•(qg)& vanishes. As in the case of stationary processes,
~18! can be derived by another method. Solving~18! for
those functionsg’s such that

^g•¹Yuy&Þ0 for all values of y, ~19!

we find

Q~y!5
CN

^ug•¹Yuuy&
expS E

0

y ^¹•guy8&

^g•¹Yuy8&
dy8D . ~20!

Again, since~20! is valid for any generalg satisfying~19!,
this implies that the conditional means for different choices
of g are related. The relation is similar to~11!:

^¹•guy&

^g•¹Yuy&
2

d

dy F lnS ^ug•¹Yuuy&

^u¹Yu2uy& D G5
^¹2Yuy&

^u¹Yu2uy&
. ~21!

A special result of the general formula~20! is obtained by
choosingg5¹Y:

Q~y!5
CN

^u¹Yu2uy&
expS E

0

y ^¹2Yuy8&

^u¹Yu2uy8&
dy8D , ~22!

which is the exact analog to~1! for stationary processes@15#.
This result is partcularly interesting because we find that, in
certain circumstances, the conditional means^u¹Yu2uy& and
^¹2Yuy& can be evaluated directly from the equations of mo-
tion @17#.

In summary, general formulas in terms of conditional
means are obtained for the PDF of fluctuating physical vari-
ables in both stationary and statistically homogeneous pro-
cesses, including turbulent fluid flows. We do not expect
these formulas themselves will lead to deeper understanding
of turbulence as their validity does not rely on the actual
physics of the processes. However, physical insights can be
gained through the study of the conditional means, especially
when these conditional means have simple features that hold
generally in various different turbulent flows. Moreover,
these general formulas may also provide a means for evalu-
ation of conditional means involving high-order time deriva-
tives of the variable, which cannot be accurately computed
directly from the data when the latter is not sampled fast
enough.
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